140 research outputs found

    Incremental bounded model checking for embedded software

    Get PDF
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain

    Shale anisotropy and natural hydraulic fracture propagation: An example from the Jurassic (Toarcian) Posidonienschiefer, Germany

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordData for this study are available at https://doi.org/10.26208/xny8-4t47.Cores recovered from the Jurassic (Toarcian) Posidonienschiefer (Posidonia Shale) in the Lower Saxony Basin, Germany, contain calcite filled fractures (veins) at low angle to bedding. The veins preferentially form where the shale is both organic rich and thermally mature, supporting previous interpretations that the veins formed as hydraulic fractures in response to volumetric expansion of organic material during catagenesis. Despite the presence of hydrocarbons during fracturing, the calcite fill is fibrous and so the veins appear to have contained a mineral-saturated aqueous solution as they formed. The veins also contain myriad host-rock inclusions having sub-millimetric spacing. These inclusions are strands of host rock that were entrained as the veins grew by separating the host rock along bedding planes, rather than cutting across planes. The veins therefore produce significantly more surface area—by a factor of roughly five, for the size of veins observed—compared to an inclusion-free fracture of the same size. Analysis of vein geometry indicates that, with propagation, fracture surface area increases with fracture length raised to a power between 1 and 2, assuming linear aperture-length scaling. As such, this type of fracture efficiently dissipates elastic strain energy as it lengthens, stabilizing propagation and precluding dynamic crack growth. The apparent separation of the host rock along bedding planes suggests that the mechanical weakness of bedding planes is the cause of this inherently stable style of propagationUniversity of Oxfor

    Evaluating QBF Solvers: Quantifier Alternations Matter

    Full text link
    We present an experimental study of the effects of quantifier alternations on the evaluation of quantified Boolean formula (QBF) solvers. The number of quantifier alternations in a QBF in prenex conjunctive normal form (PCNF) is directly related to the theoretical hardness of the respective QBF satisfiability problem in the polynomial hierarchy. We show empirically that the performance of solvers based on different solving paradigms substantially varies depending on the numbers of alternations in PCNFs. In related theoretical work, quantifier alternations have become the focus of understanding the strengths and weaknesses of various QBF proof systems implemented in solvers. Our results motivate the development of methods to evaluate orthogonal solving paradigms by taking quantifier alternations into account. This is necessary to showcase the broad range of existing QBF solving paradigms for practical QBF applications. Moreover, we highlight the potential of combining different approaches and QBF proof systems in solvers.Comment: preprint of a paper to be published at CP 2018, LNCS, Springer, including appendi

    No effect of thermal maturity on the Mo, U, Cd, and Zn isotope compositions of Lower Jurassic organic-rich sediments

    Get PDF
    This is the final version. Available on open access from the Geological Society of America via the DOI in this recordThe isotope ratios of redox-sensitive metals in organic-rich rocks are critical tools for quantifying the timing and severity of deoxygenation and nutrient cycling in Earth's past. The resilience of isotopic data to thermal alteration of the host sediments over millions of years of burial is, however, largely unknown. We present molybdenum, uranium, cadmium, and zinc stable-isotope data from two stratigraphic successions of the same Lower Jurassic Posidonienschiefer unit in the Lower Saxony Basin of northern Germany that were affected by different burial histories. We show that thermal maturity had no effect on the isotopic compositions of these elements but does appear to have increased their concentrations in the rock. The data corroborate the results of laboratory-based maturation studies and provide constraints on the Mo, U, Cd, and Zn isotopic compositions of ca. 182 Ma seawater in the Lower Saxony Basin.Shell Global Solutions International B.

    No effect of thermal maturity on the Mo-, U-, Cd- and Zn-isotope compositions of Lower Jurassic organic-rich sediments

    Get PDF
    The isotope ratios of redox-sensitive metals in organic-rich rocks are critical tools for quantifying the timing and severity of deoxygenation and nutrient cycling in Earth’s past. The resilience of isotopic data to thermal alteration of the host sediments over millions of years of burial is, however, largely unknown. We present molybdenum, uranium, cadmium, and zinc stable-isotope data from two stratigraphic successions of the same Lower Jurassic Posidonienschiefer unit in the Lower Saxony Basin of northern Germany that were affected by different burial histories. We show that thermal maturity had no effect on the isotopic compositions of these elements but does appear to have increased their concentrations in the rock. The data corroborate the results of laboratory-based maturation studies and provide constraints on the Mo, U, Cd, and Zn isotopic compositions of ca. 182 Ma seawater in the Lower Saxony Basin

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    A branch and efficiency algorithm for the optimal design of supply chain networks

    Get PDF
    Supply chain operations directly affect service levels. Decision on amendment of facilities is generally decided based on overall cost, leaving out the efficiency of each unit. Decomposing the supply chain superstructure, efficiency analysis of the facilities (warehouses or distribution centers) that serve customers can be easily implemented. With the proposed algorithm, the selection of a facility is based on service level maximization and not just cost minimization as this analysis filters all the feasible solutions utilizing Data Envelopment Analysis (DEA) technique. Through multiple iterations, solutions are filtered via DEA and only the efficient ones are selected leading to cost minimization. In this work, the problem of optimal supply chain networks design is addressed based on a DEA based algorithm. A Branch and Efficiency (B&E) algorithm is deployed for the solution of this problem. Based on this DEA approach, each solution (potentially installed warehouse, plant etc) is treated as a Decision Making Unit, thus is characterized by inputs and outputs. The algorithm through additional constraints named “efficiency cuts”, selects only efficient solutions providing better objective function values. The applicability of the proposed algorithm is demonstrated through illustrative examples

    Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe

    Get PDF
    Seismic tomography and the isotope geochemistry of Cenozoic volcanic rocks suggest the existence of a large, sheet-like region of upwelling in the upper mantle which extends from the eastern Atlantic Ocean to central Europe and the western Mediterranean. A belt of extension and rifting in the latter two areas appears to lie above the intersection of the centre of the upwelling region with the base of the lithosphere. Lead, strontium and neodymium isotope data for all three regions converge on a restricted composition, inferred to be that of the upwelling mantle

    A combined approach for analysing heuristic algorithms

    Get PDF
    When developing optimisation algorithms, the focus often lies on obtaining an algorithm that is able to outperform other existing algorithms for some performance measure. It is not common practice to question the reasons for possible performance differences observed. These types of questions relate to evaluating the impact of the various heuristic parameters and often remain unanswered. In this paper, the focus is on gaining insight in the behaviour of a heuristic algorithm by investigating how the various elements operating within the algorithm correlate with performance, obtaining indications of which combinations work well and which do not, and how all these effects are influenced by the specific problem instance the algorithm is solving. We consider two approaches for analysing algorithm parameters and components—functional analysis of variance and multilevel regression analysis—and study the benefits of using both approaches jointly. We present the results of a combined methodology that is able to provide more insights than when the two approaches are used separately. The illustrative case studies in this paper analyse a large neighbourhood search algorithm applied to the vehicle routing problem with time windows and an iterated local search algorithm for the unrelated parallel machine scheduling problem with sequence-dependent setup times.PostprintPeer reviewe
    corecore